ラベル 微分方程式 の投稿を表示しています。 すべての投稿を表示
ラベル 微分方程式 の投稿を表示しています。 すべての投稿を表示

2014年5月22日木曜日

岡村博「微分方程式序説」の書評が感動的だったので

またしても Paul 筋の情報だ.



岡村博「微分方程式序説」も, 死語すぐに出版された河出書房 (1950) に加え,
森北出版 (1969), と現行の共立出版 (2003) の 3 種ある.
解の一意性に詳しい.
河出書房版には, 岡村博氏の生前の写真がある.
井川さんの書評 http://mathsoc.jp/publication/tushin/1202/ikawa12-2.pdf


書評が非常に感動的で, この本を読んでみたくなる.
ぜひ PDF を読んでほしい.

2014年4月20日日曜日

クーラン・ヒルベルト, やはりちょっと読んでみたい

立川さんコメントだった.



こないだの学部二年生物理数学 II のテストの大問 1 の 4 が解けなかったので, 答えが知りたいという声をいくつか聞きました.
というわけで略解をつくりました: http://www-hep.phys.s.u-tokyo.ac.jp/~yujitach/tmp/ans.pdf 解けた人はごく少数でした.
何でも持ち込み可インターネット可なのに, 解けないのは何故.


この記述が気になる.
読んでみたい.



一般にどうやって示すかを知りたい人は例えばクーラン・ヒルベルトの原書一巻,
日本語版二巻の 6 章 4 節を参照して下さい.

2014年2月21日金曜日

「方程式を解く」というときの「解く」の意味的なアレ

イケメンエリートのあさみさんとの対話が面白かったので記録しておく.
といいつつそもそも「ナビエ-ストークス方程式に一般解がある」という状態がピンとこないというか, あったら逆に困るような気がする程度には数学が不自由
@adonis_fish 「ナビエ-ストークス方程式に一般解がある」というのはどういう意味で使っていらっしゃるのでしょうか
@phasetr 失礼しました, ミレニアム問題的な意味です. 困るという言葉もアレだったと思いますが, どうも水とか大気とか物理的な流体でしか捉えられないせいか近似で解くほうがしっくりくるといいますか, えっ解けるの, みたいな感覚がぬぐえませんで, 存在して全然構わないのは承知しています
@adonis_fish はじめの言明で気になったのは「一般解」というところです. 「解ける」と言う言葉の使い方も気になります. 解の存在・一意性証明を「解く」とは (特に非数学関係者は) あまり言わない気がすると言う程度の感覚的な話です.
@phasetr なるほど. 個人的には非数学関係者のほうが「解の存在・一意性証明」という (一見して) 難解な言葉遣いを避けてたんに「解く」と言い下してしまっているような (特にミレニアム問題の文脈では). これもただの印象ですが…普段接している言葉の領域が違うのかもしれませんね.
@adonis_fish 「解く」というと厳密解・近似解に限らず, 数値計算含めて適当に具体形を求める・求めようとすると言う感じで使われる印象がります. 数学で存在や一意性問題を考える場合「解の存在問題を解く」と言う感じで適当に限定するような印象です
@phasetr 仰る意味は理解しますが, こう, いわゆる「社会的」にはかなり厳密な使い分けかもしれません… 方程式を解いて具体形を手に入れる必要のない人にとっては, 解が存在するかどうか, ということとそれを具体形で手に入れられるかどうか, ということの区別にあまり意味はないので
@phasetr なんかあんまり上手く説明できていませんが, その程度の非常に分解能の悪い意味で「解く」を使ったとお考え頂ければと思います. 今後はより精確な言葉遣いに努めさせていただきます. .
@adonis_fish それは初めて知りました. そして衝撃です
@phasetr たぶん, これが使ってる言葉のフェーズが違うということだと思います. 方程式, うんあの \(x\) とか \(y\) とか出てくるやつね, というレベルを引き合いに出すのは妥当ではないかもしれませんが.
@adonis_fish 単純な疑問で, あさみさんも同じ感覚で「解く」という言葉を使っているという事でしょうか. あとその感覚, おつきあいのあるどんな人たちで見られる感覚でしょうか. 理工系の人間の感覚ではない, という漠然としたアレはあるのですが証拠は何もないので私, 気になります!
@phasetr まず 1 つ目のご質問ですが, 私は文脈や媒体, 話している相手によって言葉の意味, 定義の厳密さ (分解能という単語を先ほどは使いました) を変える, ということを日常的にやっている人間ですので, 簡便のために区別しない使い方をすることはあります (続く)
@phasetr 「同じ感覚で使うこともできるし, 使わないこともできる」というのがお答えですが, 数学に限らずツイッターにおける私の言葉の選び方はかなり感覚的なものなので, もしかしたらそっちがべースなのかもしれません. 理屈で区別しているだけなのかも.
@phasetr あと「その感覚はどんな人たちのものか」というご質問については, 仰るとおり理工系の方にはないですし, 文系ですらないというか, そもそも抽象的な思考をする習慣がないような方です. 結構います.
抽象的な思考というの, どんなものなのか今一つ分かっていない. 一般論と抽象論の区別もいまだにつかないしよく分からない.

2014年1月10日金曜日

Thomas-Fermi 汎関数周りの量子力学と関数解析・変分原理的なセミナーをしよう

ゆきみさんとやりとりしたので記録.
「量子現象の数理」ぱらぱらながめてたらめちゃくちゃ高まったので勉強追いついたら買おうと思った
@yuki_migo セミナーしましょう
@phasetr 作用素論で死にそうになってるので量子現象まではまだちょっとかかりそうです. 二章は加藤 Rellich あたりまでちょっと眺めたんですが
@yuki_migo 作用素論は何をやっているのでしょうか. 量子力学系の作用素論, あまり数学的に標準的な作用素論ではないと思うので. (標準的な方は hypo normal な作用素とか行列不等式とかそういうのやっているイメージ)
@phasetr 最近変分法まわりしか勉強してないのでアレですが詳し目の関数解析の本に書いてあるような基本的なことですよ. 半群とかあんまりやってなかったので.
@yuki_migo 何するかによりますが, 新井先生の本関係の量子力学なら, ユニタリ群の話がメインです. 半群のかちっとした話はあまり使いません. 基底状態の解析関係で熱半群は少し使いますが, 一般論かちっとと言う感じではないので
@phasetr 数学的に興味が向いてるのが PDE 方面なので新井先生とはちょっとちがうかもしれないことは最近気づきはじめています
@yuki_migo PDE ならもっとシュレディンガーかっちりやった方がいいのではないか感. 散乱理論だともう少し作用素論っぽいこともあるとは思います. 実解析的な方向なら Lieb っぽい方向でしょう
@phasetr なるほど. Schrodinger かっちりやってる本ってどんなのでしょう. Lieb の Analysis だと触り程度な感じがしますが
@yuki_migo 数学でのシュレディンガーは時間依存の方程式を扱うので, Lieb の方向と全然違う印象があります. 数学方面のシュレディンガーは全然知りません. その方向だと東大の中村先生とか早稲田の小澤先生とかいるので, 本当に興味があるなら相談してみてはどうでしょう
@yuki_migo あと非線型シュレディンガーと線型シュレディンガーとで大分変わると思います. Ginzburg-Landau とか GP とか, 関係する方程式も色々ありますし, ランダム磁場付きシュレディンガーとか何とか色々
@yuki_migo 読んでないからよく分からないのですが, 中村先生の http://www.amazon.co.jp/dp/4320015789 とか? あとはその参考文献から調べてみるとか
@phasetr ふむふむ. とりあえずつぎ大学行ったとき図書館あさりますかね. ありがとうございます
@yuki_migo 思い出したのですが, シュレディンガーと言うか実際に研究がある量子力学関係の PDE として, BCS だとか Ginzburg-Landau, Gross-Pitaevski などあるので, その辺参照すればいいのでは説もあります
@yuki_migo GL は北大の神保先生などがやっています http://www.math.sci.hokudai.ac.jp/sympo/090113/program.html あと GP は http://arxiv.org/abs/cond-mat/0610117 にも記述があります
@yuki_migo PDE 的なことしたいなら, 何と言うか, 実解析的なことをやった方が多分良くて, 新井先生方面の作用素論をやっていてもあまり役に立たないのでは感. 雰囲気知りたいと言う話なら, 何かセミナー的なアレやってもよいです
@phasetr 実解析的なのっていまいちどういうことかわかってないのでセミナーしてもらいたいです
@yuki_migo それっぽい方向で知っていて簡単な文献もっているのは Lieb-Loss Analysis での TF functional まわりとか物質の安定性位なのですがその周囲でいいですか. 能力的に出来るの恐らく TF がギリで, あまり PDE っぽい話ではなくて申し訳ないのですが
@phasetr 実際そのあたり読んでておもしろいのでおねがいしたいにゃんです
@yuki_migo ならばひとまず TF で. この辺, 微分幾何とかでも出てくるようなアレで, 要は変分的にエネルギー汎関数の値が基底エネルギーだとか物理的に大事なアレになっていて, その停留点 (とそこでの値) を調べるのに (非線型の) 微分方程式を解く必要が, とかそんなやつです
@phasetr 微分幾何の知識がないほうのゆきみんでした. このごろ Lieb-Loss の Ch11 読んでてそのあたり変分変分してておもしろいですね. せいぜい教養レベルの量子の知識しかないので物理的なことがよくわかってないんですが. 場所どうしましょ
@yuki_migo 誰かを適当に巻き込んで適当な大学でやりましょう. 微分幾何関係は解析力学と変分と言ってもいいです. 幾何学的変分問題の 1 章見るといいです. 物理知らなくてもとりあえず数学できると思いますが, ある程度保補足する予定の市民
Thomas-Fermi, 一応やろうとは思っていたのをずっとサボっていたのでこの機会に勉強しよう. いつどこでセミナーするかとか全く決めていないが興味ある向きはご連絡頂きたい.

2013年10月31日木曜日

常微分方程式論の Picard-Lindelof の定理

常微分方程式についてたんじぇさんとやりとりした内容を記録しておきたい.
Picard-Lindelof の定理ってリプシッツ連続性を仮定してるけど, この条件外したときに解が一意に定まらない例とか解が存在しない例ってどんなかなーとゆるふわに考えてる
@f_tangent 教えてください !
@alg_d 分からないから考えてるんです
@f_tangent 早く考えろ
@alg_d 数学ビーム
@f_tangent ありがとうございます ! ありがとうございます !
@f_tangent 余計なお世話かもしんないけど, これに確か解がユニークでない例が載ってた◎http://www.amazon.co.jp/gp/aw/d/400006875X
@matsumoring ありがとうございます! 近日中に見てみます!
@f_tangent 今手元にないのでどのページか分からないのですが, http://www.amazon.co.jp/Introductory-Analysis-Dover-Books-Mathematics/dp/0486612260 の定理が証明されている所のそばに反例があったような記憶があります
@phasetr ありがとうございます! 近日中に確認します.
@f_tangent 今, ちょっと本を確認したら見当たりませんでした. 何かの本で見た覚えはあるのですが. 少し検索したらhttp://books.google.co.jp/books?id=Roncfs7mozAC&pg=PA11&lpg=PA11&dq=picard+theorem+counter+example&source=bl&ots=9UOg\_GLB2D&sig=ZFz9Fyz6I4xpFpbu-iEtuJXRXHs&hl=ja&sa=X&ei=E4ZqUomOFqPiiwL7j4CoBQ&ved=0CFUQ6AEwBA#v=onepage&q=picard%20theorem%20counter%20example&f=falseというので局所解はあっても大域解が無い例というのが書いてありました
@f_tangent あとついでにいうと, \(C^1\) 級の関数は必ず局所リプシッツになるので, それについて局所解は必ずあることになります. どんな例を作りたいかによりますが, 自分で例を作るなら本当に微分出来ない関数から探してこないとあまり嬉しいことができない可能性があります
@phasetr 結構アレな反例になりそうですね...自分で考えてみます.
@f_tangent \(x''(t)=x^{2/3}\) ですか?
@ano_KTOK_ 2 階だとまだ扱ってないのでよく分からないのですが, 右辺がリプシッツ連続でないので解の一意性は保証されなそうですね
@f_tangent ごめん, \(x'(t)=x^{2/3},x (0)=0\) の間違えや w この時, \(x (t)=t^3,x (t)=0\) が解になる w
@ano_KTOK_ 追記ですが, お身体は大丈夫なのですか...
@ano_KTOK_ あ, 本当ですね, ありがとうございます. 多分初めてこういうの見ました
@f_tangent いま w ちょうどご飯食い終わって, TL みたら面白そうなこと書いていたのでつぶやいてみた w マシにはなったが, 頭はクラクラしている w やることやったらもう寝る w
@ano_KTOK_ 善導はとてもありがたいです. お身体にもお気をつけください...
@phasetr @f_tangent \(y'=2 \sqrt{y}\) は連続関数 \(f (t,y)=2 \sqrt{y}\) に対する正規型一階常微分方程式ですが, \(y_1 (t)=0\) は初期条件 \(y (c)=0\) の解で, \(t<c\) で \(y_2 (t)=0, t \geq c\) で \(y_2 (t)=(t-c)^2\) も同じ初期条件での解です.
@derived_kai @phasetr 意外とあるもんですね...参考にさせていただきます
確か上で「見た覚えがある」書いた例では, この辺のルートを使っていたような覚えがある. 自分で例が作れないというのも情けない限りだが.

2013年10月27日日曜日

『「動く特異点を持たない方程式」がなぜ大事なのか』に関するツイートを dif_engine さんがまとめていたので

Paul の『「動く特異点を持たない方程式」がなぜ大事なのか』に関するツイートを dif_engine さんがまとめていた. 遷移しなくても見られるよう, 引用しておく.
そうか, 数式の意味は作者にあるわけではなく, 鑑賞者にまかされているのか.
.@kyon_math 私も, 動く分岐点を持たない方程式を分類したと思ったら, フックスの子倅が「モノドロミ保存変形だよー」と言い出してびっくりしました. リハルトが P6 見つけたときは, こっちは最初の 3 つしか見つけてなくて, 冷や汗かきました.
動く分岐点を持たない方程式を分類するモチベがわからなくて入り口に行かなかった人生だった.
動く分岐点を持たない方程式がなぜ重要か, パンルヴェ本人による連ツイをはじめます.
遡ると, Briot^Bouquet の楕円函数の特徴づけになるでしょう (1856). F を有理函数として, 加法公式 f (u+v)=F (f (u),f (v)) を持つ函数 f (u) は何か? (続く
続 2) BB の答えは「有理函数・指数函数・楕円函数に限る」です (竹内端三・楕円函数など参照) が, 加法公式があれば f'(u)=G (f (u)) という一階自励系の解でもあり, 加法公式を持てば, 動く分岐点がないことは自明です. (続く
続 3) BB の定理は「 G を有理函数として 1 階 ODE f'(u)=G (f (u)) が動く分岐点を持たないなら, 解は有理函数・指数函数・楕円函数に限る」という形にもなります. では, 自励系ではなく一般の ODE にしたらどうか? この問題は 1870 年頃に Fuchs と Poincare が考えた
続 4) F-P の定理「一階微分方程式 F (u,f (u),f'(u))=0 が動く分岐点を持たなければ, リッカチか楕円函数か初等函数で解ける」. 一般の点 u に対して F_u (f (u),f'(u))=F (u,f (u),f'(u)) とおくと, リーマン面 F_u (x,y)=0 の種数は一定.
続 5) F_u (x,y)=0 の種数が 0 ならリッカチ, 1 なら楕円函数, 種数 2 以上でも, 初等函数で解ける場合は, 動く特異点を持たない. この証明は易しくはないが, 古典的には Forsyth の 6 巻本に書いてある. なお, 一階方程式は動く真性特異点を持たないことを示したのが私の学位論文.
続 6) 1 階の次は 2 階だということになりますが, ピカールは 1889 年に今でいう第 6 パンルヴェ方程式の特殊な場合「ピカールの解」を楕円曲線の不完全周期の満たす微分方程式として導出しています. 同年, パンルヴェ性を可積分系に最初に適用した「コワレフスカヤのコマ」の論文も出た.
続 7) ということで, 1890 年ごろは「動く分岐点を持たない 2 階方程式の研究」をしようという動きは, 方程式論からも, 剛体の運動方程式の可積分性 (第一積分の発見) からも, まだ代数曲面の周期という観点からも起こっており, 自然な問題意識であった.
続 8) さらに三体問題で, 三体同時衝突の場合は衝突時間で代数的特異点になる (私の結果, のちに Sundman が拡張) ことからも, すでにパンルヴェ性と可積分性の関連は意識されており, そういう流れの中で 1898 年に私が最初の (間違った) 分類定理を出した. これは 1906 年には修正された.
続 8) というわけで, 現代の皆さんは忘れてしまったかもしれませんが, 「動く分岐点を持たない方程式」は 19 世紀後半には, 数学全体の中でも決して特殊な問題ではありませんでした. 1905 年の R.Fuchs のモノドロミ保存変形との関係ありますが, 可積分系や周期積分とも関係します (終)
「私」というのがどの「私」なのか時々判然とせず非常にややこしい方の Paul だった.

2013年8月1日木曜日

定常状態の熱伝導方程式と楕円型方程式の解の挙動について気になることがあったので

ちょっと数学的・物理的に気になるやりとりをした のでメモ.
「う」がつけば何でもいいなら楕円型非線形偏微分方程式でいいだろう 
楕円型っていうと, 熱伝導の式とか? QT @phasetr: 「う」がつけば何でもいいなら楕円型非線形偏微分方程式でいいだろう 
@VINZARNY 全然違います 
@VINZARNY 説明がいいかどうかは微妙ですが, 例えばこのページなどに説明がありますhttp://ja.wikipedia.org/wiki/%E5%81%8F%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F 適切な者が見つけられず申し訳ない限り 
@phasetr 楕円型, 放物型, 双曲型偏微分方程式があるのは知ってますん. 細かいことは忘れてましたが. 
@VINZARNY ああ, 定常熱伝導じゃないと楕円型にならないか. 非定常だと放物型だ
あと これ.
. @phasetr 定常熱伝導方程式 http://www.sit.ac.jp/user/konishi/JPN/L\_Support/SupportPDF/HeatConductionEquation.pdf 
@VINZARNY 定常状態に関する解析というのは知っていますしこの文脈で定常状態の拡散方程式と呼ぶのも分かりますが, 熱伝方導程式といったら少なくとも数学では普通方物型を指します
時間定常の熱伝導方程式が単純に時間項を落とした式として紹介されているが, 物理的に実験と合うのだろうか. もちろん適切な境界条件などの設定も必要だが, 定常状態は方程式自体は放物型の解で, それの時間無限大の極言を取った状態だと思っていたので, 実際のところどうなのか凄い気になる. 境界条件などが同じだからといって, 放物型の解の極限と楕円型の解は一致するのだろうか.

根本的に私の認識がおかしいということももちろんありうる. 機械工学の人の文章らしいし, 実験的な裏付けはきちんとありそうだけれども.

2013年6月11日火曜日

線型系の数学的処理と非線型系の数学的処理:複素数の利用的なアレ

ゆるふわ quantum 美少女の議長さんが 次のようなこと を言っていた.
交流回路とかでよくあるけど、物理量(というか実数値しかとらないもの)に複素数値をとることを認めて 微分方程式を立式して求解した上で改めて実部をとる、みたいなのあるけど、 あれの前提となる「微分方程式が関数の実部と虚部でそれぞれなりたってる」のって線形系だけだよね、たぶん…
あと これ.
例えば安直な例ですが、 \(df/dx= \sqrt{1-f^2}\) みたいな非線形微分方程式、 \(f=\sin x+c\) なのはいいとして右辺が必ず実数値をとるであろうことを考えるとfの虚部に関して恒等的にゼロ、 以外の解がなさそうに見えるけど \(\sin(ix) = i \sinh (x)\) でもいいんじゃね、とか
そして ここ からはじまるやりとりをした.
@hisen_kei あまりきちんと覚えていませんが, 非線型光学では本当にはじめから実の解だけを考えてそこで処理をしないといけないとかいう話を聞いたことがあります. Maxwellは線型ですが,確か境界条件で非線型性が入るとかいう話だったはず 
@phasetr ていうか自分で例を出してなんですが、これ左右でi倍の差が残るような 
@hisen_kei 元の方程式,真面目に考えていないのですが右辺が複素数を取ってはいけない理由がない (\(f^2\) であって \(|f|^2\) とかではない)ので,それだとまだ変な解出せるような印象
例に挙がった方程式の方は別にいいのだが, 線型の方程式に非線型の境界条件を入れるというのは数学としても面白いらしい. Rayleigh-Jeans だかでも境界条件として非線型性が入ってきて, 非線型偏微分方程式の問題として面白くなりそうだ, という話を聞いたことがある.

特に何かを主張したいということはなく, ただそう聞いただけの話だった.

2013年6月2日日曜日

境界がある $R^n$ の領域上の微分方程式論と多様体上の微分方程式論でふと思ったこと

全くの専門外なので全く知らないのだが, ふと思ったので適当に書いておく. 運が良ければ専門家が何か教えてくれる可能性もある.

詳しいことは忘れたのだが, 以前東大数理の儀我先生が「ときどき \(\mathbb{R}^n\) 上の解析よりも多様体上の解析の方が難しいと思っている人がいるようですが, \(\mathbb{R}^n\) の方が難しいことだってあります」と言っているのを聞いたことがある. 何か具体的に変な領域を考えて, その上だと何か面倒なことが起きるという話だった. 詳しいことを覚えていないため, 今から考えるとそれに対応するような変な多様体上で考えれば, 同じように困ったこと起きるのでは, という気もするが, 儀我先生がその程度のつまらないミスを犯すはずもないので, 多分本当に難しい話なのだろうと思っている.

今回の本筋はそこではなく, 境界がある領域・多様体上の微分方程式の解析についてだ. 基本的に多様体上だと境界がないところで考えるのが普通だと認識している. 例えば次の本の書名, 『境界つき多様体のディラック作用素』を見ても何かそんな気がする.



\(\mathbb{R}^n\) の領域での楕円型の偏微分方程式だと, 解の存在が考えている領域の境界の滑らかさに強く依存するとかいう話を聞いたことがある. 方程式にもよるはずだが, 境界が区分的に \(C^2\) くらいでないとそもそも解がないため, どうしてもそれだけは仮定しないといけない, とか聞いた覚えがある.

多様体 (manifold) だと多分境界まで込めて滑らかなのを仮定していると思うので, 上の条件での議論はあまりしないような気がするのだがその辺どうなのだろうか, というところ. 幾何解析の本, Aubin の『Nonlinear Analysis on Manifolds. Monge-Ampere Equations』を見ると, 例えば Kahler 多様体の上での \(C^5\) 級の解の話があったりするが, 境界の話が出てきた, と思ったら有界な \(\mathbb{R}^n\) の領域の話だった.



幾何解析で変な境界を設定して議論することあるのだろうか, というのが私の素朴な疑問だ.
話はずれるが, 確率論を駆使したり実解析的な方だと境界がフラクタルの場合とかゴリっと出てくるはずなので, \(\mathbb{R}^n\) ではもっとすさまじい境界を出してこられる.

あと本当に特異性がある代数多様体 (variety) で微分方程式やるときとかどんな感じになるのだろう. 必ずしも境界の話ではなくなるのでアレだが. さらに, 私の無理解のため本当にピント外れの話をしている可能性もある.

2013年5月30日木曜日

作用素環と作用素論:スペクトル解析への応用


Evabow さんとちょっとしたやりとりをしたのでせっかくなので記録しておく. 私のツイートは これ だ.
@Evabow1 @bread_crust http://arxiv.org/abs/0911.5126 など, Schrodingerのスペクトル解析に作用素環を使うというような話はあります. 微分方程式でも調和解析でもなく作用素論の方面なので大分ずれはしますけれども
はじまる部分はもっとあとの方だが, 面白い内容なので 元ツイート からはじめる.
本ゼミの前提知識に作用素環も増えた。 
@Evabow1 ヤバいのでは・・・ 
@Evabow1 !?!? 
@Manaka0501 理解を深めるには必要になった。まだ初歩的なとこしか使わないが 
@bread_crust Banach*環のいい本教えてください!! 
@Evabow1 頑張ってください! 
@Evabow1 何が知りたいの? 
@bread_crust Banach*環、C*環と表現論つながりのことが知りたいです。 
@Evabow1 それは群C*環の表現のことを言ってるの? 
@bread_crust そうです。 
@Evabow1 微分方程式でそんなん使うのか… 
@bread_crust 微分方程式←調和解析↔表現論↔作用素環 みたいな感じだと思っています。 
@Evabow1 ちなみに、それは一般論を知りたいの?有限群を知りたいの?Lie群を知りたいの?無限次元Lie群を知りたいの? 
@Evabow1 えーっと他にもあるのかな… 
@Evabow1 なんつーか群C*環で俺が知ってるのって、今読んでるDavidsonしかないんだけど(本当はもっとある)、 それって本当に今必要なのかなって感じはある。 もちろんC*のことをある程度知ってるなら十分に読める。 
@Evabow1 そして非有界作用素のことを言ってるなら竹崎でも読めばいいんじゃないかと思うんだけど、それこそ本当に必要なの? 
@Evabow1 というわけでDavidsonと竹崎を読んで俺に教えてください 
@bread_crust 3時前に寝てしまって返信が遅れました。 C*環まわりの表現論の一般論と非有界作用素が知りたいです。 作用素環が本当に必要なのかどうか現時点ではよく分かりませんが、 微分方程式を別の角度から見ようと思ったときにどこかで使うと思うので 
@bread_crust 何かと忙しい院はなく学部のうちに手がつけられる所はやっておきたいなと思っています。 いろいろ助言をしてくださってありがとうございました。 
@Evabow1 ごめん、C*環のまわりの表現論の一般論ってなにを指してるのかがわからないんだけど、 単に作用素解析とかGNSを指してるわけではなくて、群の(ユニタリとかの)表現のことでいいんだよね? 
@bread_crust 群の表現です、すみません。 
@Evabow1 @bread_crust http://arxiv.org/abs/0911.5126 など,Schrodingerのスペクトル解析に作用素環を使うというような話はあります. 微分方程式でも調和解析でもなく作用素論の方面なので大分ずれはしますけれども
@phasetr ありがとうございます!数理物理方面も少し興味があるので、挑戦してみたいと思います。
作用素環専攻だったのに普通の作用素環の常識的なところも知らない自分, かなりまずいという意識だけはある. 最近だとどんな本で勉強するのだろう. 最近も何も, 数理物理に特化した本しか読んだことないので, 昔の本もろくに知らないが.

2013年5月26日日曜日

宇宙論のモデルの解の存在:諸科学・工学への数学の応用


詳しく聞かなかったのが失敗なのだが, 宇宙論をやっていた友人が次のようなことを言っていた.
この間, 先輩に読んでる論文について質問したら, 「その論文で出てるモデル, 解がないことが示されてるから読んでも意味ないよ」って言われて, 頑張って読んで損した.
解が存在しない, というのがどういう意味で言っているのか, 解の非存在についてどういう議論をしているのかを聞きそびれたのだが, 何にしろ, 物理でも方程式というかモデルを立てたあと, そのモデルの価値について解の存在という観点から議論をすることがあるというのを聞いてちょっと驚いた.

これについて, 例えば下記のような本を書いていて, 東大での産業数学に関する取り組みで中心的な役割を果たしている山本先生などの話を思い出す. 儀我先生も同じような話をしていた.

  
その話というのは, 自然科学や工学の人達と数学が共同研究するときに解の存在の議論をする意味についてだ. 解の振る舞いを調べることが仕事という状況で, そもそも解が存在しないようなモデルは考えても意味がない. もっというなら解がないようなモデルはモデルの立て方自体が悪いと思える. 一旦モデルを立てたら, そのあとは基本的には数学の仕事になる. モデルの正当性について, 解の存在という観点からの研究も大事なのだ, という話をしていた.

私もその通りだと思うのだが, この考えはなかなか受け入れられないようだ. ただ, 儀我先生の話だったが Allen-Cahn 方程式で有名な Cahn (だったと思う) は工学者なのだが, 例外的にこうしたことについて非常に理解が深く, 数学の利用法として解の存在証明は決定的に大事だと擁護してくれていたという話を聞いた.

宇宙論の友人の話をふと思い出してこのようなこともついでに思い出した. Twitter でも TL に宇宙論とかその近辺の人がいるから今度聞いてみよう. あと, この辺の数学の話は関西すうがく徒のつどいでも話したい.

2013年5月14日火曜日

Hilbert 空間から始めるよく分からない数学 セミナー初回の内容をもう少し詳しくした


なかなか時間が取れなくて非常にアレなのだが, 大体話したいことはピックアップした. Twitter で この辺 から適当に呟いたのは下にまとめる.

その他, あとで動画にもする予定で, そこではさらに詳しく話す予定なので, それに合わせて今から詳しい内容も作っておきたい. 特に特殊関数周りの具体例を色々あげておきたいと思っている. 今すぐに見たいという向きもあろうから, 参考文献を軽くあげておこう.

全体的な話として, まだ買っていないのだが「直交多項式入門」がかなり気になっている.


とりあえず触れようと思っているのは, Legendre 多項式, Legendre 陪関数, Hermite 多項式, Laguerre 多項式, Fourier 級数のあたりだ. ちなみに今はじめて知ったのだが, Chebyshev 多項式は この PDF によると, 計算機の中での応用があるらしい.

Legendre や球 Bessel については この PDF が参考になるかと思う. 自分が知っている話, ということで物理への応用について話す予定で, 正にそういう話だ. Laguerre は例えば この PDF を検討している. 上記多項式もそうだが, Hermite についても手元にある本含め, まだ資料をあさっている.

今すぐ参考文献を知りたい向きは, 基本的には偏微分方程式を解くところで使うので, その辺で探すといい. 「物理数学 Legendre 多項式」などで探せば色々出てくる.

Fourier は熱方程式, 波動方程式, 電磁気学あたりで探すといいだろう, 数学の本ではあるが, 逆問題を通じた応用的な色彩が強い本として, 波動方程式への応用については下記の本の前者を, 熱方程式への応用については後者を参考にすると楽しいだろう.


物理への応用に関してよい参考書は今探しているところだ. 波動の本でもいいが, 電磁気 (電磁波) からの話が個人的に気に入っているというか感覚が掴みやすかったので, その辺で探すといい. もちろん, 自分の専門に近いところ, 自分にとって分かりやすいところで探すのが一番いい. いいのがあったら教えてほしい.

多項式から話題を変えるが, 例えば変分というのがある. 変分原理として物理の各所で現われるが, 量子力学で基底エネルギーを出すのに使うこともある. 実係数の微分方程式への数学的応用ということでは Brezis の本が定評がある. もちろんかっちりとした数学の本だ. Hilbert 空間を中心に議論されている. 最近演習問題も追加された英語版も出版されたので, 買うならそちらを買った方がいいかもしれない. 東大の微分方程式系の研究室での学部 4 年のセミナーでも使われることがあるようなので, そのくらいきちんとした本だ.


また, 何度も紹介しているが, 解析力学というか幾何学での変分ということで次の本が比較的分かりやすく, しかも面白い.


読んだことはないのだが, 物理での変分原理については次のような本もある.


これまでの微分方程式の話とは大分変わるが, 作用素論につなげるので, 量子力学とスペクトルの話もしたいと思っている. これについては日合-柳本はもちろんのこと, 数理物理としては新井先生の本がいい.

   
量子力学での変分に関する数学的に精密な話も書いてある. 他には, 作用素の関数やユニタリ表現に関する話も大事だ. 作用素の関数については先日ワヘイヘイオフで詳しい話を聞かせろ, という要望を受けたので, 別途早めにまとめようと思っている.

では以下, Twitter での発言を抜き出しておく.
Hilbert 空間から始めるよく分からない数学のセミナー的なアレの原稿, いい加減作ろう. イントロでずっと固まっているが, そろそろ具体化したい. イントロだけはもう少し線型代数全般について話をしたい 
まず超大雑把に言って教養でやる線型代数らしい線型代数と, 微分方程式方面と関わる方面の話と, 関数解析または作用素論的な抽象論みたいな感じの話がある的な話をする 
加群への展開とか, Lie 群への展開とか数学として取り逃すところは色々出てくるが, この辺は私の数学力的に手に負えないところが出てくるので色々ある, とだけ言って逃げる. ただ表現論とFourierと, みたいなところと量子力学とかは少し触れたい 
Hilbert 空間の抽象論と作用素論的な展開と量子力学との関係的なアレはあとで詳しくやるから, 軽くこなす. まずは有限次元の方か 
有限次元と言ったところで専門に近い所で見ても色々あるし困る. とりあえずハバードだとか, 直接的に研究に結び付くくらいやばい, という話はしよう 
あとは数値計算でも使う的な話は入れよう. 微積分との絡みで平衡点近傍の安定性とかそんな話もしよう 
脱線するが, 平衡点近傍の話, 多分力学系とかそういうところでも使う. あまりきちんと勉強していないが, 山本義隆の解析力学にも解説あるし, ゆきみさんいわく常微分方程式と解析力学にも解説あるらしい 
これは適当な線型化から系の性質を調べるとかいう話で, 微分積分や力学とも深い関係がある. 機械工学とかその辺でも確か出てくるはずとかそんな話をしたい
あと標準的なコースの重要性はきちんと言わないといけない. 行列式と固有値, 固有ベクトルあたりは何をネタにしよう. 物理の各所で出てくるが. 固体物理というか連成振動とかその辺か. あと統計学での主成分分析とかそういう話か. この辺, 具体例を仕入れる必要がある 
固有値, 固有ベクトルは量子力学とかその他物理でも色々展開があるという話はしよう. 物理の話ばかりしているのもどうかという気はするが, 応用はそれしか知らない無学な市民だった 
Googleのページランクみたいな話もしよう. 確率との関係とかエルゴードとか言っておくと響く向きには響くだろう. これ, 数値計算とも関係するかなりクールな話なので盛り込みたい 
とりあえず有限次元はこんなものか. 無限次元というか微分積分への接続として平衡点近傍の話をもってくる方がいいか. あとは微分作用素と積分作用素の線型性は必ず触れる. 我が魂 
@aki_room 毎回2時間くらいのを4回くらいの予定です. ヒルベルト空間とその上の作用素論を3回でスペクトル分解までやろうという無茶な企画. まともに回るか分かりませんが,とにかく一度やってみようという無茶企画です 
http://tinyurl.com/d6ggdkr 【phasetr 【参考】 http://www.ulis.ac.jp/~hiraga.yuzurugf/LA/matlab/gallery.shtml】 
@JosephYoiko ありがとうございます. 例を作って図示まで自分でやるのは結構手間なので助かります 
関数解析的な意味での無限次元の線型代数, 何を話そう. 時間があるから適当に抜粋するが, ネタとしては色々書いてためておこう. まずはブログの方にも書いたTaylorと微分作用素の関数と並進とかその辺か 
あと微分作用素の固有値展開からのFourierか. Fourierは高校でやった三角の積分が直交関係を表す的な話は入れないといけないだろう 
今回, 個別の話をやっている余裕はなかろうがLegendreやらBesselやら, 量子力学とか電磁気周りでの微分方程式を解くときにも出てくるという話も盛り込みたい 
これは個別の関数の相手もそれはそれで大事なのだが, 理屈としては線型空間論で一括処理できるのだ, という認識を持つことで数学的, 精神的な負担を減らすことを目的に, 必ず触れるようにしたい 
あとアレだ, モノによっては多重極展開とか応用上の意味があったりもするから, 単なる数学ではない部分もある的なアレ. 変分とか無限次元の微分とかいう話はすると楽しいかよくわからないが, ネタとして書いておこう 
イントロはこんなものか. ネタ多すぎるので確実に削るが, 他にもどこかで話すなり, 最終的に動画にするときには盛り込むからいいか. あとスペクトルの話はきちんと触れ直そう 
関係ないが, 今日の math-phys の arXiv に非可換調和振動子に関する廣島先生と佐々木さんの論文が出ていた. これはこの間の埼玉大のセミナーでも少し話したが, 若山先生が最近やっているやつで数論というかゼータと関係があるやつ
考えてみれば, Hubbard や Google のページランクについては動画を作ったのだった. それも紹介しておこう.

2013年5月5日日曜日

応用数学だとか数理工学だとかの何かアレ


経済とか物理について Twitter で これ とか これ みたいな呟きしていたら, こんなツイート を見つけた.
数学から工学に移ったときは都落ちしたような悲哀を少し感じていたものですが 「工学の問題にどうやって数学を使うか」という問題はやってみると中々面白いです。 ノイズ、精度、計算コストの制約があるので単に数学的に解けば良いわけでもない。 そういう事がわからず、最初はかなり空回りしました。
前にも書いたが, 応用数学というべきか数理工学というべきか, 工学での数学というべきかよく分からないが, つどいあたりでこの辺, 紹介してみたいと思っている. 参考にしたいのはこの辺.

  
あと Google のページランクや符号理論の話とかしてもいいのか, とふと思った. 興味がある向きはページランクは これ とか, 符号理論は これ とか参考にしてほしい. 次のような本もある.

 
折角だしこの辺もどこかで話そう. 動画も改めて作りたい.

2013年4月22日月曜日

今まであまり触れたことない数学やりたい

どう言ったらいいのか分からないのだが, 何か新しい数学を勉強したい. 超我侭に適当にいうと, 代数と幾何と解析が渾然一体となった感じのお得感あふるるやつがやりたい. あと何となく微分方程式がやりたいお年頃なので, 何かその辺でやりたい. 1 つの目的は素人向けの数学で何か動画作りたいからだ. 素人と言ってもいつも通り, 一定以上の数学力を既に備えている層に向けている.

何となく東大の大島先生がやっているような感じの数学は素朴な割に尋常ではないくらいやばい雰囲気も感じるので, 面白そうだからその辺で適当にググったら 曲面と超幾何関数 という PDF を見つけた. 面白そうだったのでとりあえず共有しておきたい.

少し書いてあったが, 射影空間で何かやるの面白そう. あと一応関係がある話として, 直交多項式入門がほしくなった.




代数と幾何の知識があまりにもないので, 悲しい. こういうとき, 数学科を出ておらず中途半端にしか数学知らないのが悲しい.

2013年4月9日火曜日

Hilbert 空間から始めるよく分からない数学のリアルセミナーをやりたいので東大数理各位にご協力頂きたい

この間 TL で新入生が線型代数何ぞ的なこと言っていたのもあるので, 新入生向けに線型代数の世界を見せたい. 私が話せるのは解析学周辺しかないが, ないよりはましだろう, ということで. 大体, Hilbert 空間と線型作用素を基本に話す予定. モチベーションを高めることを目的に概論的な話で 4-5 回くらいに収めたい. というわけで, 東大数理の学生で, 話すための部屋確保に協力して頂ける方を募集している.

  
やる予定の内容を書いておきたい. 基本的には抽象論をやる. 作用素論方面の話に行ってスペクトル定理くらいまでやりたい. 作用素環などで大事になる方向だ. 非可換幾何への展開でまた \(L^2\) などとの関係が返ってくる. あと, \(L^2\) のような話は具体的な話はもちろん大事だが, これはイントロで少し触れるだけにする.

まずイントロでする予定の話. 線型代数は (数学内部または少なくとも物理と物理に近い工学で) 役に立つという話はされるだろうが, あまり具体的な話はされない (時間がない) だろうから, その辺の話から入る. 新入生向けなので, まず Hilbert 空間は何ぞというところを話す. 高校でもやった三角関数の積分が実は Hilbert 空間で意味を持つというところ, 微分積分と線型代数の交点というか親玉みたいな話としての関数解析で大事な空間という話をする. また, 物理でそれなりに色々な数学が出てくるが, 線型代数という視点でクリアで統一的な理解ができるから大事だよ, 的な話をする. 微分作用素, 積分作用素の線型性とかも話す必要がある.

物理または工学上大事な数学的道具立てとして大事な微分方程式があるが, 初等的な方程式なら具体的に解ける. 「線型の微分方程式」という中で既に線型性が出ているので, そういうところで解析と線型代数の関わりみたいな話がしたい. これを解く中で現われる直交多項式の話の「直交」も線型代数由来の話で, これが Hilbert 空間の話という感じで. 量子力学の数学的構造 I の 1 章の演習問題にいくつか書いてあるので, 一応参考文献として挙げておこう.
  
また, Taylor 展開と作用素論ということで \(e^{ipx}\) の話もしよう. 簡単に説明しておくとこんな感じ. \(f(x)\) を原点周りで Taylor 展開するとこうなる: \begin{align} f(x) = \sum_{n=0}^{\infty} \left( \frac{d}{dx} \right)^n f(0). \end{align} どうでもいいが, 量子力学っぽく \(p = -i d/dx\) と書こう: \begin{align} f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left( i p \right)^n f(0). \end{align} ここで指数関数の Taylor 展開は \begin{align} e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \end{align} となる. ここで Taylor 展開の \(\sum_{n=0}^{\infty} \frac{1}{n!} \left( i p \right)^n\) は \(x\) に \(ip\) を代入したものと同じ形をしていることに注意して次のように書き換えてみる. \begin{align} f(x) = \left( e^{ipx}f \right) (0). \end{align} 指数関数に微分作用素を叩き込むという荒技を披露したが, 作用素論を使ってこれが正当化できます, みたいなことも言いたい. また, 作用素の指数関数 \(e^{ipx}\) は Taylor 展開で定義してしまうと解析関数に対してしか定義できないが, \(x\) だけずらす作用素と思えば一般の関数に対して定義できる. ここでユニタリ作用素とかそういう話になる. あと \(x\) だけずらす作用素 \(e^{ipx}\) の無限小生成子としての運動量という所から, 解析力学と量子力学の関係がどうの, みたいな話もちょろっと触れたい.

以上大体イントロで話す予定のこと. 2 回目から実際にもう少し踏み込んだ話をしていく. まずは Hilbert 空間自体の話をする. 「ヒルベルト空間と線型作用素」には Banach 空間の話もあるが, 時間的に多分カットだろう. 演習問題になっている定理にも少し触れたい. 完備性の話などもあるので, 証明もポイントをおさえて触れていきたい.

引き続き 2, 3 章を力づくでやっていく. 非有界作用素はゴツ過ぎて触れられないが, スペクトル定理はやりたい. スペクトル定理は無限次元版の対角化だ. スペクトル測度や解析関数カルキュラスとか出てきてやばいのだが, むしろ色々な数学との関係を話す機会として採り上げたい. Stone の定理と量子力学の話とかも一応入れる予定.

参考文献をまとめておこう. 1 つの展開としての作用素環方面, 特に (非可換) 幾何方面ということで, 数学会で PDF が公開されている 夏目-森吉 の「作用素環と幾何学」も紹介しておこう.

   

触れる予定はないが, 微分方程式関係と共に関数解析をやろうという感じの本も紹介だけはしておこう. こういう具体的な方から学ぶのが好きな人は頑張ってアタックしてみてほしい. また, こちらに興味があるという人は声をかけてほしい. トークしろと言われると困る部分はあるが, 一緒に勉強しようというなら時間さえ合えば付き合いたい. そしてプロデュースしたい.

  

2013年3月13日水曜日

Twitter まとめ:数学の作用素論と数理物理の作用素論


数学の人がいう作用素論と数理物理というか量子力学周辺の作用素論は少し違う. 知っていることについて少しまとめておこう. 私は数理物理というか量子力学, 場の量子論周辺の作用素論の人間であり, 数学側の動きを完全に知っているわけではない. 実際にはもっと色々あるだろうから, 参考程度に思ってほしい. このあたり からはじまる.
作用素論っておもしろそうなにおいするけどいまいちどんなのかわからんぽん 
@yuki_migo 数学の人がいうところの作用素論は有界作用素の話のようですね. 正規作用素というのがありますが, それを一般化したhyponormalとかそんなのを議論したりする模様. 日合-柳の本に多少書いてあります. その他には行列不等式とかその辺も多分作用素論 
@yuki_migo 物理系というか私の周辺の作用素論だと, 量子力学とかその辺の具体的なハミルトニアンの解析をします. 坊ゼミではその辺の話をします
上に引用した日合-柳の本はこれだ.

4 章までしか真面目に読んでいないのだが, 非常にいい本でそこまででも十分に価値がある本だ. 証明も丁寧に書いてあり, とても良い本なので紹介しておきたい.

前書きにもある通り, 作用素環関係の話題はほとんどないがその方面にいくとしても役に立つことはあるだろう. 日合先生の方は実際に作用素環もやっている. Hilbert 空間中心なのだが, 1 章では Banach 空間のこともきちんと書いてある. 関数解析の基本的な定理は全ておさえてあるので, これで関数解析の勉強もできる. その場合は付録もきちんと読む必要があるけれども. あとで書くが, この付録がまた良くできているので付録も絶対に読んでほしい.

2 章から作用素の話に入る. ここからは特に『量子力学の数学的構造』の 1 と重なる部分が増える.

上掲書よりも議論がすっきりしているので, 読みやすいと感じる人もいるだろう. ただポイントとなるスペクトル定理が『量子力学の数学的構造』と『ヒルベルト空間と線型作用素』で違う証明になっている. どちらとも味があるが, 私は『ヒルベルト空間と線型作用素』の, Riesz-Markov-Kakutani の定理を使う証明方が気に入っている. 『量子力学の数学的構造』の方は余計な道具を持ち出さないストイックな感じで, それはそれで良い. 両方勉強しておくとなおいい. あと『ヒルベルト空間と線型作用素』の方は有界作用素の functional calculus に関する議論が役に立つ. これは作用素環でも非常に役に立つ議論なので, これで慣れておくと便利だ.

3 章はスペクトル定理だ. 作用素論の至宝であり, 量子力学への応用上も決定的に重要なのできちんとやってほしい. 『量子力学の数学的構造』では 2 巻にまわっている Stone の定理も一緒に証明されているところがまたいい.

4 章はコンパクト作用素の話だ. 量子統計などで形式的に使うことはあるが, 実際にはあまり使えない. ただ, 一度はきちんとやっておくべき内容ではある. Fredholm 理論は応用上色々なところで出てくるようだが, そういうところでも使える. 超対称性とかそういうところで出てくると聞いている.

5, 6 章は作用素論の進んだ話になる. あまり真面目に読んでいないので書けることはない. ただ, 今, 作用素論で研究されていることの基礎的なところに触れているようなので, そこに興味がある人は学んでおくときっと役に立つのだろう.

そして付録だが, これが恐ろしくいい. Hahn-Banach, Riesz-Markov-Kakutani, Krein-Milman, Stone-Weierstass, Gelfand-Naimark の定理という, 関数解析の至宝とも言える定理が非常に丁寧に議論されている. Riesz-Markov-Kakutani の定理は汎関数が積分で書けるという一連の定理の基礎となる話であり, 証明も込めてきちんと学んでおくべきだ. 「正値超関数は測度である」という超関数論の有名な定理もこれとほぼ同じ証明だ. 他にも確率論で Brown 運動を構成するときにも使える. Krein-Milman は端点集合に関する話で, 作用素環で純粋状態の議論をするときに魂となる.

話がずれまくって『ヒルベルト空間と線型作用素』の書評になってしまったが, よい本なので関数解析の初学者にも最適なので, 興味がある人は是非参考にしてほしい本だ.

それで作用素論だが, 微分方程式関係でも多少「作用素論の結果」として出てくることがある話がある. Sobolev 空間の埋め込み関係で埋め込み写像がコンパクト作用素になるという話があるが, それは上でも少し書いたコンパクト作用素の話になる. 微分方程式で定評のある本, Brezis の本でも Fredholm の択一定理が載っていたので, 使うことはあるのだろう. 微分方程式は不勉強なのであまり言えることはないのだが.

数学の作用素論で行列不等式がある, と書いたが, これは専門書がいくつかある. 和書だと最近出た本で面白そうなのがあったので紹介したい. 買うだけ買ってまだきちんと読んでいないのだが.

行列不等式は量子統計, エントロピー関係でも時々出てくる. 作用素環レベルで無限次元版があったりするのであなどれない.

数理物理というか量子力学の作用素論だが, こちらは具体的な非有界作用素の解析をするのが中心になる. これはやはり新井先生の本を勧めるしかない.
  
議論は恐ろしい程丁寧で内容もしっかりしているのだが, 正直, Hilbert 空間論や関数解析の数学としての入門には向かない. 少なくとも上記 3 冊全部読めば基礎はカバーできるのだが, 関数解析として体系だった紹介はされていないので, 要領が悪い. あくまで量子力学用に特化した内容で, 量子力学のために必要なことをある程度具体的な問題を通して学ぶ本と言った方がいい.

はじめに書こうと思っていたことと大分違ってしまったが, まあいいだろう. 量子力学関係の話については, 3/24 の埼玉大でのゼミ で話す予定なので興味がある方は参加されたい.

2013年3月7日木曜日

数学科および物理学科での数学教育についての雑感:数学者 Hans Freudenthal (1905 - 1990) の紹介文を見て


Twitter を色々見ていたらこんなの を見つけた.
@yujitach やはり「線形」には違和感が(違う)。 ちなみにFreudenthalは1990年に普段散歩してる公園のベンチで死んでいるのを子どもに発見されたそうです。 http://www.fisme.science.uu.nl/en/freudenthal.html
Freudenthal, 名前だけは聞いたことがあるので Wikipedia で少し調べてみたが何をやっていたのか正直なところよく分からなかった. 20 世紀前半の仕事だというのに今一つよく分からないというの, 何となく衝撃的だったが, 例えば量子力学も一応成立は 1925 年と 20 世紀前半の話なので, 20 世紀前半の話が既に破滅的に難しいというのを再認識した. 最近『数学まなびはじめ』を読んで時代的に数学者に落ちる戦争の影を見たので, 上記 URL にはその点からも感慨深い文がある.
面白かったのはむしろ教育に関わる部分だ.
As a teacher he acquired international fame and significance as the founder of realistic mathematics education, which is based on problems taken from day-to-day experiences rather than on abstract math rules. Single-handedly Freudenthal saved Dutch education from the American teaching method of New Math, which was introduced in many countries from 1960 onwards. This formal, logic-based method turned out to be unsuitable for most students.
Freudenthal preferred to send his students on a tour of discovery. His motto was that you learn mathematics best by re-inventing it. His students were not given abstract bare problems to do but well chosen practical problems from daily life, and in solving these they gradually developed mathematical understanding. In addition, Freudenthal thought the recognizability of the problems would lead to the students automatically becoming more interested in mathematics.
独力でアメリカの New Math 運動からオランダの教育を救ったという猛烈に格好いい話に目が向く. 何の本だったか忘れたが, 小平先生は娘さんが New Math に巻き込まれて酷い目にあったとかで批判的な文章を書かれていた覚えがある.
学部は物理学科であって正規の数学教育 (?) を受けたのは修士からであり, 修士ではある程度具体的な問題を念頭に置いて勉強していたので, 学部レベルの数学科の数学についてはよく分からないこともあるが, 物理学科で数学を学ぶときの苦労ぐらいは書いておきたい.
物理学科はあくまで物理をやるところなので, カリキュラムに組み込まれた数学も物理のための数学に集中する. (歴史的な経緯もあり私の大学の物理学科では実数論, 集合論, 位相空間が必修だったが, とりあえずこれは抜かす.) 物理のための数学とはいうが, 正直, 具体的にどういう数学をどこでどう使うという話はあまりされず, 結構雑だった気がする. 私が単純に聞き落としていた, 聞いてはいたが全く実感が持てなかった, 本当に話されていなかった, 物理で出てくる数学的問題を解決するための数学なのでその元の数学の話が分かっていないといけないためそもそも物理・数学ともにある程度まで進まないと話すのは不可能, などいくつか原因はあろうが, 今になって考えるとかなりつらい思いをした学生もいたのではないかと思う. 私に関していうなら, 数学を数学として楽しめたという理由以上に毎日訳が分からず目の前の勉強を必死になってやっていて, そんなことを考える余裕もなかった, というのが実情という感じがある.
通じづらいと思うので「物理で出てくる数学的問題を解決するための数学~」という部分について簡単に触れておこう. いくらでもあるのだが, 一つは私の専門でもある線型代数だ. 大雑把過ぎるので, さらに具体的なものとして線型空間論を挙げておこう. 少なくとも初等物理では線型の微分方程式がたくさん出てくる. 「線型の」と言っているくらいなのだから当然線型代数が関係しているのだが, これに気付いたのは学部 3 年くらいだった気がする. 量子力学でも重要なので講義でも多少触れたのではないかと思うが, 全く記憶にない. 量子力学は学部 3 年のとき本当にやばいくらいに何も分からず, 学部 4 年で新井先生の本で数学的に復習しつつ整理してやり直したという感じであって, 講義で何かを身に付けたという覚えすらない.
話がずれたが, 線型代数だ. 力学の講義でも出てくる方程式 (運動方程式) は大体線型で重ね合わせが成り立つことを使っているので, その時点で死ぬ程線型代数を使っているのだが, これも気付いたのは大分あとのはずだ. 無論線型代数の講義で学んだ記憶はない. ちなみに多体系の安定性みたいな話をするときにポテンシャルを Taylor 展開して Jacobian の行列の正値性に帰着させる話も線型代数だが, これも学部 1 年当時に本当に線型代数だと認識できていた自信はない.
話がずれっぱなしなのでさらに戻して「物理で出てくる数学的問題を解決するための数学~」のところだ. 上記の例では (偏) 微分方程式の線型性という話をしている. 微分方程式自体あまり馴染みがないので, 微分方程式と言われてもあまりピンと来ない. 運動方程式は学部 1 年の力学でも嫌でも出てくるのでまだいいが, 偏微分方程式となるとつらい. 物理で偏微分方程式を使うというと当然色々あるが, 電磁気学を例に, と言ってもその電磁気 (の数学的取り扱い) が分からない. 電磁気となるとベクトル解析も必要だが, こうやって線型代数の必要性を感じるために他の数学, さらには物理 (の数学的取り扱い) まで知っていないといけない (ご利益が感じられない) ので, 結局学び始めの段階で具体的な応用の話がしづらくて困る, という話がしたかった.
他の大学は知らないが, 私の大学では学部 1 年次に物理学演習だか何か (講義名を忘れた) という名の数学の演習の講義が必修であり, そこで通年の (教養の) 線型代数や微分積分の講義とは別に必要な数学をトピックごとにやっていた. そこでも実際の応用はあまり話された覚えはない. ただ「とにかく使うことだけははっきりしているから, 泣こうが喚こうがやれ」という雰囲気はあった覚えがある.
色々書いていたら何が書きたかったのか分からなくなってきたのだが, 数学を学ぶことに具体的なモチベーションがあるはずの物理学科ですら, 「必要だからやりなさい」という感じで学習段階であまり具体的な応用の仕方を伝えられることはなく, 結構つらかったという感じのことが言いたかった. Twitter で言ったのだかブログにも書いたのか忘れたが, 物理ですら道具とする工学部だともっとつらいのだろうな, と思っている.
そして更に元に戻ると, 学部の数学科ではどういう問題意識で進めていくのかよく分からないという話になる. Freudenthal は抽象的な問題よりも日々出くわす実際的な問題を出題し, それを解くことで数学に慣れ親しませたとあるが, これはどういうことなのだろう. この辺, 数学者は数学的自然の中に生きている感があって何となく羨しく感じた.
もちろん今となっては「日々出くわす実際的な問題」みたいな感じはある程度分かる気はするのだが, 必ずしも大学の数学に親しんでいない, 特に学部 1 年生をどう励ましていくのかというところに興味がある. ある程度慣れた学部 3 年とか, 研究を目指す修士の学生にそういう感じで学ばせていくところにはイメージが湧くのだが. 数学科の修士を出たにも関わらず, (学部の) 数学科は不思議なところだという感覚がいまだにある.
あとこれも前から思っているのだが, 微積分やベクトル解析に関し, 純粋な数学の人の物理抜きの理解の仕方というのがとても気になる. ベクトル解析だと多様体上の解析というか, Stokes の定理とそこからの展開というイメージの仕方はあると思うが, 私は 2-3 次元でのベクトル解析は物理というか電磁気のイメージなしには最早理解できない. 理解できないというか, 真っ先に電磁気的なイメージが広がってしまうので, 何というか「純粋な数学」として感知できない. こういうの, 数学の人はどう思っているのだろう.
それはそうと, 3/16-17 の関西すうがく徒のつどいでは正にこの辺の「具体的な問題を通した数学学習」というイメージで, 色々な (反) 例を紹介する講演をする. それで Freudenthal の話が気になった次第であった.
ついでにいえば, 数学科に限らず, 物理でも結構「具体的な数学」というのが結構穴になっている感じがあるので, その間隙を縫うことがしたいなとはずっと思っている. ニコニコでの動画での目的の一つはそこにあるのだが, 数学的に極端過ぎるので, もう少しクッションになれるのを作りたい.