2013年4月23日火曜日

読んでいて楽しい数学の本


(数学科の学生が) 読んでいて楽しい本 というのが紹介されているページがあった. 名前だけ知っているが読んだことない本やそもそも全く知らない本など色々あった. 和訳がある本もいくつかあるし, PDF の参照がある本もある. 興味がある向きもあろうから, とりあえず共有しておこう. 本だけ抜き出しておこう.
  1. On Numbers and Games, by John Conway.
  2. Groups, Graphs and Trees: An Introduction to the Geometry of Infinite Groups, by John Meier.
  3. Ramsey Theory on the Integers, by Bruce Landman.
  4. Fourier Analysis, T.W.Korner, Cambridge University Press, 1988
  5. Generatingfunctionology by Herbert Wilf.
  6. The Symmetries of Things by Jon Conway
  7. Visual Complex Analysis by Needham
  8. Roads to Infinity: The Mathematics of Truth and Proof by Stillwell
  9. Primes of the Form $p=x2+ny2$ by David A. Cox
  10. Gamma: Exploring Euler's Constant
  11. Concrete Mathematics, by Graham, Knuth, & Patashnik,
  12. Cauchy-Schwarz Inequality
  13. Cauchy-Schwarz PDF
  14. The Sensual (Quadratic) Form, by John Conway.
  15. Proofs that Really Count, by Art Benjamin and Jenny Quinn.
  16. Surreal Numbers by Knuth.
  17. The Shape of Space by Jeff Weeks
  18. The Knot Book by Colin Adams
  19. The Wild World of 4-Manifolds by Alexandru Scorpan
  20. Counterexamples in Topology
  21. Visual Group Theory
  22. Matrix Groups for undergraduates by Kristopher Tapp.
  23. Numbers, by Ebbinghaus and 7 co-authors. It has nice
  24. Want-Be-Mathematician-Automathography-Spectrum
  25. Robertson and Webb's Cake-Cutting Algorithms: Be Fair If You Can
  26. Real Infinite Series
  27. A Radical Approach to Real Analysis
  28. Counterexamples in Analysis
  29. Galois Theory for Beginners
  30. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics (Plume Books, 2003)
  31. Unknown Quantity: A Real And Imaginary History of Algebra (Joseph Henry Press, 2006)
  32. Information Theory, Inference and Learning Algorithms by David Mackay
  33. Topology And Groupoids, by Ronald Brown
  34. Imre Lakatos, Proofs and refutations: The logic of mathematical discovery
  35. mathematical fiction books
  36. Modern Graph theory by Bela Bollobas
  37. Euler's Gem
  38. Fifty challenging problems in probability. Here is a
  39. Graphs and their uses by Oystein Ore.
  40. A History of Abstract Algebra by Israel Kleiner
  41. In Pursuit of the Traveling Salesman by William Cook.
  42. Mathematics Form and Function Saunders MacLane
  43. A Gentle Introduction to Art of Mathematics by Joseph Fields
  44. Galois Theory by Ian Stewart
  45. Conceptual Mathematics -Lawvere and Schanuel
  46. Sets for Mathematics -Lawvere and Rosebrugh
  47. A Walk Through Combinatorics - Bona
  48. Combinatorial Species and Tree-Like Structures -Bergeron, Labelle & Leroux
  49. Ordinary Differential Equations - Arnold
  50. What Are and What's the Purpose of Numbers -Dedekind
  51. Collected Works of Karl Menger - Menger
  52. Algebraic Number Theory and Fermat's Last Theorem- Stewart
  53. Theory of Gambling and Statistical Logic -Epstein
  54. Theoretical Introduction to Programming - Mills
  55. Elements of Statistical Learning - Hastie, Tibshirani & Friedman

0 件のコメント:

コメントを投稿