物理学科だったので私のベクトル解析は電磁気やら何やらで物理まみれだ. 悪いとも思わないし, 杉浦の解析入門でも物理での使い方の紹介みたいなのがあるので, 多分数学としてやる上でも参考になるのだろうとは思う.
私が気になるのは, そういう物理などの応用を全く見ないで数学として学んだ人たちが, ベクトル解析の諸定理に対してどういう感覚を持っているのだろう, というところ. 純粋な数学としての理解, もう私にはできないのでどういう感覚なのだろうかというの, とても気になる.
あとついでに思ったのだが, 多様体での Stokes の定理をダイレクトに学んだ人なら, 物理抜きの勉強になるような気がする. こういう人はどういう感覚を持っているのだろう. 多様体論で Stokes をやるとき物理がどうの, みたいなことは全くやらないから. もっというならここまで来ると解析というより多様体, 幾何の話になるので, そこも何か感覚違う気がする. むしろ, 物理で使うときも解析というより幾何的な見方をすることになるので, 本道という気もする.
関係ないが, 実多様体, 1 の分割とか関連する面倒な話が多過ぎて勉強するのつらい. つどいで宇宙賢者も言っていたが, 複素多様体から入った方が何となくすっきり幾何に入れる気がする. この辺, 学生時代ほとんど勉強していなかったのでもう少しきちんとやりたいとずっと思ってはいる.
0 件のコメント:
コメントを投稿