2013年6月17日月曜日

数学初年時教育に関する kyon_math さんと Paul_Painleve さんと suzukit216 さんあたりの会話を備忘録として記録しておく

この間 Twitter 上で kyon_math さん周辺が高校数学から大学数学への接続みたいな話を色々していた. 自分の備忘録として目についた範囲で適当に記録を残しておく.

とりあえず これ.
数学教育において、大学入学直後に高校までとの違いを実感させる派と、 高校→大学へシームレスにつなげる派の争いは、大昔からずっとあるが未だに結論は出ていない。 ただ、10年単位でみて昔よりは「大学の壁」を下げているのは事実である。
自分が在学していた頃しか知らないので何とも言えないが, 「大学の壁」というのは何を指すのだろう. あと別件だが, 数学科は数学だけ, 物理学科が物理と (必要な) 数学だけしていればいいから楽だが, 他学科だと他にも色々しなければならず, 本当に大変だろうと前からずっと思っている. 以前, 「物理や数学が難しいから」という私には不可解な理由で工学部に進学したとか言っている人を見かけたが, どう考えても工学の方が苛烈. しなければいけないことは多く時間は限られているとなると, 破滅的な詰め込みと大概の人間の理解力を越えたペースで進まざるを得ず, これを乗り越えられる人間はもはや修羅しかいない.

つらい.

次は これ.
いや、やっぱりシームレスにつなげた上で、ガーンと一発お見舞いしとかないと… RT @Paul_Painleve: 数学教育において、大学入学直後に高校までとの違いを実感させる派と、高校→大学へシームレスにつなげる派の争いは… 
@kyon_math 線型は佐武、微積は杉浦あたりを使えば、一応は「シームレスにガーン」になってますよね。 たぶん学生側は、大学の巨大な壁を感じまくるでしょうけど。 今は、線型性や \(\epsilon - \delta\) の細かい話を1年の中でも少し遅らせる傾向が強いと思います。 
@kyon_math @Paul_Painleve 高校数学の内容を「より深く」考えるのであって、そもそも「違う」はずはないんですよね。
学部が数学科ではなかったので純粋に数学科だとどうするべきなのか, またはどうなっているのかは全く分からないが, 他学科だと何故そんなことを考えるのか, 自分の学問でどう使うのかというイメージが全く持てないとつらいと思う. 私は比較的数学を数学のまま扱える方ではあるが, 数学として何がどう展開していくか, という部分は数学科でも大事だろう.

前にも書いたが, 私の場合は一浪してようやく大学に入ってはじめの一週間, ずっと高校でもやったような話でがっかりしていた中, 一週間最後の金曜に実数論で全力で殴られ, 「こんな訳の分からないのをやるために一浪してまで大学に来たのだ」と感動した方の市民なので, 多分こうアレな方なのだろうという気がしないでもない.

ふと思い出したのだが, この間『白と黒のとびら: オートマトンと形式言語をめぐる冒険』というのを読んでみた.



面白かったのでそのうち備忘録的書評を書くが, この中で先生が「私は意味のあることしか教えていない. お前がその意義を理解できるかどうかは別だ. 」という台詞があった. こういう話はよくあるので, 上記のような「数学として何がどう展開していくか, 今していることの意義」みたいなことは, 言ったところで分からないからわざわざ言わないという選択肢, かなり真剣に検討すべき事項だと思う.

この間, Twitter でも「名著と言われる本を読んで, 分からなかったところがあり自分で説明を考えたが, あとで良く読み返したら自分で考えたのと同じ説明が書いてあった. 」という呟きを見かけた. 真面目な人が真面目に勉強していてもこういう話が本当にあり, これはそのまま上記の話につながる. 教える方も頑張って気を配って言って, 学ぶ方も真剣に聞いていても起こる面白い現象だ. 詳細は忘れたが, 前に irobutsu 先生が「もっと早く教えてくれればよかったのに, 皆いうが, 早く教えても意味全然分からないと思うよ」みたいなことを言っていたことも想起した.

次は これ と これ.
まぁ基本、数学は誰でも理解できて使えるはずですから。 究極的には人類がしっかり進歩して幼稚園児にも使えるようになって欲しい。#まだ進化の途中ですな RT @quasiac: 「高校数学は幼稚園児でもできる」っと… 
一方で数学を生み出すことはまったく異なるのではないかと。
世界が悲しみに包まれた.

そして これ.
グローバル大学につながらない苦しみはいずこへ…? RT @On_Absolute: 加藤先生は,“Global につながらない苦しみが cohomologie になるのだ” と説かれます. 
@kyon_math @On_Absolute そうか、英語ができなければ、層係数コホモロジーや導来圏を勉強すれば、グローバル化できるのだ 
@Paul_Painleve @On_Absolute 数学はユニバーサルな言語ですからね。
そろそろ京大は宇宙際大学を名乗り始めるべきだ. あと global analysis の研究で何かそういう予算とれないの.

そして これ.
わたしは最近「違う」のではないかと思っています。いまの高校数学は昔より算数化していて、教え方は特に算数化している。 RT @suzukit216: @Paul_Painleve 高校数学の内容を「より深く」考えるのであって、そもそも「違う」はずはないんですよね。 
@kyon_math @Paul_Painleve それを言うなら大学初年度の微積と線形も… 
@kyon_math それはここ20年以上かけて、高校数学とのギャップをなくそうとしてきたから。 私よりも実体験として理解してると思う@suzukit216さんに言うことではないですが、 理工系大学の多くは最底辺でなくても、大学1年で数IIIの復習をやらないと講義が成り立たない。 
@Paul_Painleve @kyon_math 数学科以外の理系学部でε-δ論法とか位相集合論をやらなくなったのはいつ頃からなんでしょうか? 
@Paul_Painleve @suzukit216 まぁ工夫しているのはわからんでもないのですが、 一度連続性や微分可能性を通過してから \(\epsilon - \delta\) やれったって困りますよね。 数学って論理のつながりだから、やっぱり破綻する。 
@suzukit216 @kyon_math 大学によって、人によって差があり過ぎるので一概に言えませんが、 阪大だと90年代は難波さんの本http://www.amazon.co.jp/dp/4785314087 が一つの標準と思われてましたが、 2000年代に入って諦めた人がしだいに増えたと思います。
次は これ.
その傾向は大学にも及んでいて、現在、多数の大学で初年度は計算方法しか教えていないのではないかと危惧します。
そして これ.
微積では \(\epsilon - \delta\) 抜き、一様収束抜き。 線形では抽象ベクトル空間には触れない。 次元公式はやるが、あくまでも行列版で、商空間はやらない。 次元公式より準同型定理の方がよほど簡単なのに。 
@kyon_math いやいや、深谷圏でも理論ができる前、かなり初期の頃は、 ベクトル空間としての次元が同じだから圏同値になるはずみたいに言ってたような。 全てわかってしまえば笑い話。 
@kyon_math あ,あれ,後期一年生の線形代数の準備中で, とりあえずベクトル空間の定義をノートを書いたのですが…… 
@kyon_math 易しい教科書でも、連続函数の積分可能性を言うためだけに一様連続の定義が書いてあったりするんですよね。 で、一様収束はない。 
@abenori いや、H大はいいの。 ちゃんとやって下さい。 しかし、東北大の昔の教養のテキストは最初にいきなり抽象ベクトル空間。 そしてそれから数ベクトルですね。理論の流れはこちらの方が自然。 
@abenori あ、目次見ると私の記憶が間違っていたようである。 やっぱり、数ベクトルからだな。 いきなり基底と次元をやるのが心に残ってたと見える。 訂正します。 
@cocycle @abenori @kyon_math 1年次は数ベクトルだけに留める、というのも一つの見識だとは思うのですが、 数学科は2年に教え直さないといけないのはもちろんとして、 1年次は行列計算をちゃんと学生に演習させないといけないのですが、そこが難しいですね。 
@Paul_Painleve @cocycle @abenori 線形代数つまらんという感想が多いのですが、 やはり単なる数値演算に終始するのが元凶なんではないかと。 しかも出てくる数値がことごとく「整数」ときどき「有理数」、後期に入ってルート2か i くらい。
他はどうか知らないが, 物理だと量子力学でどうしても線型空間が分かっていないと困る. おそらく, 限りなくユーザ側に近い立場で使うだけなら具体的な微分方程式としての Schrodinger 方程式が扱えればいいのだろう. ただ, せっかく物理学科に来て物理学科の学生として量子力学を学ぼうというのなら, やはり抽象論は知っておきたい.

最近忙しさにかまけて Hilbert 空間論のセミナーの準備全くしていない. 申し訳ない @ぞみさん.

そしてこれ.
わたしは最近「違う」のではないかと思っています。いまの高校数学は昔より算数化していて、教え方は特に算数化している。 RT @suzukit216: @Paul_Painleve 高校数学の内容を「より深く」考えるのであって、そもそも「違う」はずはないんですよね。 
@kyon_math @Paul_Painleve それを言うなら大学初年度の微積と線形も… 
@kyon_math それはここ20年以上かけて、高校数学とのギャップをなくそうとしてきたから。 私よりも実体験として理解してると思う@suzukit216さんに言うことではないですが、 理工系大学の多くは最底辺でなくても、大学1年で数IIIの復習をやらないと講義が成り立たない。 
@Paul_Painleve @suzukit216 まぁ工夫しているのはわからんでもないのですが、 一度連続性や微分可能性を通過してから \(\epsilon - \delta\) やれったって困りますよね。 数学って論理のつながりだから、やっぱり破綻する。 
@kyon_math @Paul_Painleve 全部逆に辿れば不可能ではないとは思いますが、 連続性も \(\epsilon - \delta\) を使った方が、確かにずっと楽ではありますね。 
@suzukit216 @kyon_math \(\epsilon - \delta\) なり実数論をちゃんとやらないから、 中間値の定理と閉区間の最大値定理が証明できない。 平均値の定理もできない。 一様収束も無理なので函数列の極限とか微分・積分の交換可能性も無理。 なのに、一様連続だけは言葉だけ教える。 
@Paul_Painleve @kyon_math 中間値の定理と最大値定理の証明は \(\epsilon - \delta\) やらないと無理ですね。 ロルの定理は極限を使った実数の連続性から言えそうですが。 もちろん順序の問題だけで、最終的には \(\epsilon - \delta\) に行き着くわけですが。
調子に乗って超準解析は, とかいうと TL 上の修羅から殴打される.

そしてこれ.
ですね。連続関数なんて超難しいのを扱うからそうなる。 高校と同じく原始関数を持つものだけ扱えばよいのではないかと。 RT @Paul_Painleve: 易しい教科書でも、連続函数の積分可能性を言うためだけに一様連続の定義が書いてあったりするんですよね。 で、一様収束はない。
連続関数という修羅.

次はこれ.
その意味では高校の教科書ってよくできてるんだよなぁ。 ああも難しいところをきっちり隠蔽した上で計算上なんの支障もないように、 表面的には論理に破綻をきたさず… すごいと思う。 
@kyon_math 全くもって同感です。あれは本当にすごいと思います。
そういえば前, 何か色々な人と話をしていたとき高校の教科書の話になり, 松尾先生が「ベクトルのところで『ベクトル方程式』というのが出てくるがアレはいかん」とかいう話になって, たまたまいて高校の教科書の作成者的なアレに名前が載っていた坪井先生にそれを言ったところ, 「私もそう思いますが色々あるのです」とか言って苦笑いしていたのを想起した.

そしてこれ.
数年前にK中先生に、教科書の執筆者としてF谷先生を迎えたんだが、 あの積分の定義に激怒して、あんないい加減なことやってちゃイカン、定義をしっかりせよと主張。 しかしK中先生、少しも慌てず「では、その定義はF谷先生にお任せします」 
@kyon_math いい加減なことをやってるんですが、全体を見ると、 そのいい加減さが、いい加減になっていて、よくできてるな、と(何を言ってるんだ、私はいい加減な人間だな) 
@Paul_Painleve 高校の教科書は、あれは相当考えて作ってますよ。 ひるがえって、大学の教科書の方があまり考えてないかも。 
@kyon_math 厳密性が高い方が、理論を組み立てるのが楽ですからね。 つまり、微積はちゃんと \(\epsilon - \delta\) や実数の連続性から勉強するのが、 大学生にとっても一番楽なんだよ、という話に。 
“@Paul_Painleve: @kyon_math 厳密性が高い方が、理論を組み立てるのが楽ですからね。 つまり、微積はちゃんと \(\epsilon - \delta\) や実数の連続性から勉強するのが、大学生にとっても一番楽なんだよ、という話に。” 僕の学生は必見ね。
ふと思い出したのだが, 前から物理でエネルギーをどう定義したらいいか分からなくて困っている. とりあえず Wikipedia 先生にお伺いを立てるとこうある.
(物理学)仕事をすることのできる能力のこと。物体や系が持っている仕事をする能力の総称。
一方, 仕事の定義はこう.
物理学(力学、熱力学)において仕事(しごと)とは、物体に加えた力と、 それによる物体の位置の変位の内積(スカラー積)によって定義される物理量である。 熱と同様にエネルギーの移動形態の一つで、 MKS単位系での単位は N·m もしくはJである。
言葉の濫用という可能性もあるが, 量子力学での基底エネルギーとか束縛エネルギーというときのエネルギーと整合性が取れるような定義, どうすればいいのだろう. 基底エネルギーのエネルギー, 上記の意味で使われているとは思えないのだが.

今回もとりとめのない話に終始した.

0 件のコメント:

コメントを投稿