2013年2月17日日曜日

書評:数学まなびはじめ 第 1 集 深谷賢治



今回は第 1 集の深谷先生のところについて書評というか感想を書こう. 冒頭に次のような記述がある.
「数学まなびはじめ」というシリーズであるが, あまり古いことを書くのは恥ずかしい.
ここに注があって, 大学 1, 2 年のころの話は岩波講座「現代数学の展開 1」の月報に書いたとある. 手元には無いが, これも読んだことがある. こちらにはケリーだか有名な位相空間論の本をどう読んでいたか, またその読み方がどう滅茶苦茶だったかなどというのが書いてある. どの本だったか忘れたが「この本のはじめは定義ばかりがずっと続いていて全く面白くないのに, どうしてあんなに熱中して読めたのか不思議で仕方ない」とか「今の私がそんな風に本を読んでいる学生をみたら, そういう読み方はまずいと指摘しているところだ」と言った記述があり, これもまた面白い. 深谷先生ですら学生の頃には本の読み方を分かっていなかったということであり, 何というかほっとした記憶がある. またこのクラスの, 後年優れた数学者になる人でも初学時には変な読み方をしてしまうのだから, 初学者や独学者は適切に導く必要があるとも思うようになった.

本文だが, 冒頭から面白い. こうはじまる.
臆病で大学院に落ちるのが怖かったので, 学部で所属していた東京大学以外に京都大学の大学院も受験した.
あまりこういうのもアレだが, 深谷先生のクラスでも大学院に落ちるのが怖いというか, 院試に落ちる可能性を考えたというあたりにこう色々なものを感じる.
私は, ひねくれた性格のせいか, 難解ということになっているものを勉強したがる癖があり, いまでも直っていない.
注 4. これが悪いことか良いことか, 一概には言えない. 難しくないことは価値がないというのは, もちろんとんでもない偏見で, 数学の定理は証明するのが難しければ難しいほど良い定理だなどというのは真っ赤な嘘である. しかし, 難しそうだというだけで逃げ出すという風潮も, 困ったことであろう.
少し話がずれるが 2 つ想起したことがある. どれだったか忘れたが, 河東先生のページに置いてある Jones に関する文章に, 「Jones の仕事は誰かやっていてもおかしくなったが, それをきちんと取り出してきちんと調べたことに意義がある. 」 というような記述があった. 高温超伝導を引き合いに出し大意として 「ありそうだとは思っていても実際に誰も踏み出さなかったところに果敢に挑んだことが素晴らしい」とあった覚えがある.

さらに話がずれるが, 物理をやっているときに数学的な難しさと物理的な意義は全く関係ない. 田崎さんが統計力学の本で書いていたと思うが, 例えばボソンとフェルミオンの出現に関する話だ. 不可弁別性に関する話で ψ2=1 を解き, そこから ± を取ってボソンかフェルミオンか, という話をする. 2 乗の式を解くだけなので数学としては簡単なことこの上ないが, 物理としては当然決定的に重要なことだ. うるさいことを言えば, 置換群の無限次元 Hilbert 空間上のユニタリ表現とか仰々しく言えるが, こういうことを言うのは単に格好をつけたいだけのアレな人なので無視するか, 線型代数で殴りつけるかしておけばいい.
結局, 私は, 非線形偏微分方程式を使う微分幾何は少しかじっただけで, Gromov 流の Riemann 幾何学に進むことになった.
これも前, どこかで読んだ深谷先生の文章に「Yau の論文はよく分からない凄まじい式が数ページ続いたあと, 誰が見ても大事と分かる定理が書いてあって凄かった」みたいな記述があった気がする. 単にそれを思い出しただけなのだが.

次の記述は修士の学生にとっては「励み」になるのではないかと思う.
そのころの私は自信過剰で, 自分に修士論文が書けないはずがないぐらいに思っていた. それで修士 1 年生が終わりかけ, 「自然に」かけるはずの論文ができてこないと, 焦り始めた. 勉強することと研究することの違い・段差がしきりに意識されるようになった. 修士 1 年から 2 年に移る春休みは, 焦りからほとんど数学ができず, 哲学の本を読んで 2 ヶ月ぐらいを過ごした.
これでついでに加藤先生の話を思い出した. 数学に集中するあまり半裸で街を歩き警官に捕まったという逸話があるが, これは確か修士論文で行き詰まり, 悩みに悩みに抜いていて身なりに気を配る余裕などなかった, という話だったと思う. 一度加藤先生の講演を聞いたことがあるが, Y シャツを派手にはみだしたまま講演していた. 数学しかできない人というのはこういう人をいうのだな, と深い感動を覚えた.
しかし, 結局私も「高貴な」ゲージ理論に惹かれてリーマン幾何を離れることになった.
注 8 それが良かったのかどうか, 最近しきりに気になる.
「高貴な」数学ということに関しては数学者の視点を読んでほしい. どう言ったらいいのか全く分からないのだが, 注のさらりとした一文にこう色々なことを考える.


Floer 関係の話がまた格好いい. 少し長いので特に格好いいと思った一節だけ抜き出して終わりにしたい.
そのような Floer ホモロジーの扱われ方が私には不満だった. Floer ホモロジーが切り開いた無限次元トポロジーの世界は, 4 次元トポロジーと同じくらい豊かで重要なはずである. 4 次元トポロジーへの応用ではなく, Floer ホモロジー自身にこだわってみたい. これが私がゲージ理論, そしてシンプレクティック幾何学の研究に入っていく, 突破点になった.

0 件のコメント:

コメントを投稿